Archive for June 2006
WC wisdom
a. if you cannot score you cannot win
b. if you beleve your midfield is the strongest in the world, it isn’t
c. it is easier to simulate than to suffer a foul
d. if you want to fall it is far more convenient to do it in the opponents’ penalty area
e. putting a defender at just one of the goalposts is not enough
f. defending by using the offside rule depends on all the defenders being awake and aware of their surroundings
g. it is better if your goalkeeper has previous familiarity with the rounded thingy everybody else is kicking around
h. lots of goals against a weak team are no evidence of greatness
i. referees’ influence on the result cannot be underestimated
j. if Blatter speaks in the morning against touching the ball with one’s left hand, use the right one
Free the Poor from Social Housing
Why would the poor remain poor?
Surely even they must be able to understand the obvious advantages of being rich? And so is it right to treat them with condescension, as a fellow member of a mailing list once wrote “If they're born into and stay there, then they stay there by choice”?
Choice? What choice?
People born in squalid conditions, "educated" in squalid conditions and inhabiting in squalid conditions…aren’t they obviously less likely to take advantage of opportunities for the mere fact that they simply cannot see them?
Because they have seen few of them in the past, have been "taught" to live in squalid conditions, have had little exposure to people that "made it" (apart from successful drug traffickers and other gangmasters)
Not to mention the fact that "opportunities" are hard to take advantage of when the daily struggle is how to avoid having one's apartment taken over by crazed drug addicts
There is some data showing that in the UK the people of Afro-Caribbean descent less likely to be poor nowadays are the ones whose families were unable to get a flat in those gigantic housing complexes for the poor (that have since then turned in labyrinthine no-law areas)
For more than a decade after blacks began to arrive in Britain in large numbers, they were excluded from public housing and occasionally from private rented accommodation too. By 1971, 44% had bought properties. Fortunately for them, many of those properties were in central neighbourhoods that have seen enormous price increases. […]
Many of those who fought their way into public housing, on the other hand, have become stuck in the inner city. Having been placed disproportionately in high-rise blocks, surrounded by criminality and malfunctioning schools, they lack the means of advancement. Black women's finances are not helped by a rate of lone parenthood that is more than twice the national average.
I say, let’s destroy asap all old-style social housing projects. Redistribute the people in the real world, as intermingled with other social strata as possible. And especially at the beginning, help their children 24/7 to find a way out of what life has taught them so far.
A tragic result that should make us think twice about the bovine application of simplistic socialist ideals
Borders that matter
From "A Muso Duro" (Marco Belpoliti, La Stampa, 20 June 2006 (in italian)):
In truth the geographic divide in the Italian Peninsula is not between the North and the South, but between East and West. The Italian "Boot" is more tilted than it appears in classrooms' maps, and it is possible to travel from North to South on the Adriatic side without crossing any mountain: from Venice to Bari there is no separation clear border, apart from the Po, which it is not a true dividing line between North and South (are Emilia and Romagna regions of the Italian South?). The geographers have explained to us for a long time that the true geographic difference in Italy is that between the Adriatic and the Tyrrhenian sides, even if it is obvious that the cultures follow the "geographic quotas", and the differences between the villages placed East or West of the Appennini are never clear-cut
This is not just a phenomenon of the Appennini
Think of the Alps, where cultures have diffused among the mountains: therefore distributing themselves across the watersheds, instead of considering those like border lines
Mountain chains all over the planet (look at the Caucasus, the Himalayas, the Rocky Mountains), looking to the modern eye like "natural borders", have been demonstrated time and again as lines of union, and not of separation
A "geographic border" with more important social consequences exists, and it is the border between those within easy approach of great ways of communication, and those far away or on the periphery: the wealth of the Po Valley instead of the history of poverty on the surrounding mountains; the powerful economy of the close-to-Europe Italian North, instead of the perennial crisis of the faraway Italian South; and looking at other countries, the opulence of Paris and London instead of the marginalization of their peripheries
Inaccurate reporting on the National Geographic Magazine
Just got acknowledgement from the National Geographic Society of some inaccuracy I have found on one of the articles published on their famous Magazine
The article is Gretel Ehrlich's "Last Days of the Ice Hunters", published in January 2006
Ms. Ehrlich writes: "[…] By the time the light fades about 11 p.m., we head toward shore […] About midnight the fading sun is a red orb hanging at the horizon. As darkness bleeds into it, the temperature plummets to minus 40°F. Night will be brief — in a few hours the sun will swing east again.[…]"
In fact, from the context of the article we know the above must have happened on the 19th or 20th of March ("[…] March 21, the vernal equinox and our fourth day on the sea ice […]"). So near the spring equinox, when as we all know there are 12 hours of light and 12 hours of darkness on the entire globe (Greenland included).
This puts into doubt the midnight fading sun reported above
————-
To check the actual situation, I used the U.S. Naval Observatory Astronomical Applications Department's tool, that can be used online starting from Weatherimages.org
I entered the location for Qaanaaq (the town where Ms. Ehrlich was reporting from) as Longitude W 69deg 00min, Latitude N 77deg 40m
I assumed also that Qaanaaq, like the rest of Greenland, uses GMT-2 as its time zone
These are the results
Saturday 19 March 2005 Universal Time – 2h
Begin civil twilight 06:56
Sunrise 08:36
Sun transit 14:44
Sunset 20:55
End civil twilight 22:38
Sunday 20 March 2005 Universal Time – 2h
Begin civil twilight 06:39
Sunrise 08:21
Sun transit 14:35
Sunset 20:54
End civil twilight 22:38
Friday 19 March 2004 Universal Time – 2h
Begin civil twilight 06:46
Sunrise 08:26
Sun transit 14:36
Sunset 20:49
End civil twilight 22:32
Saturday 20 March 2004 Universal Time – 2h
Begin civil twilight 06:37
Sunrise 08:19
Sun transit 14:35
Sunset 20:56
End civil twilight 22:40
——————-
From the above it can be argued that, contrarily to what reported by Ms.Ehrlich:
- The light faded to below-twilight levels between 20 and 30 minutes before 11pm
- Accordingly, about midnight the sun was not visible, instead than being "a red horb hanging at the horizon"
- Nights were not brief (they were lasting between 11h20m and 11h40m)
Notably, conditions as reported by Ms. Ehrlich can be experienced in Qaanaaq around April 12
Monday 12 April 2004 Universal Time – 2h
Sunrise 05:03
Sun transit 14:29
Sunset 00:04 on following day
And it is not a problem of time zones. With the Sun transiting at 2h30pm, Qaanaaq's clock appears to be already 2 hours ahead of the local solar time
———-
In summary, Ms.Ehrlich has incorrectly reported seeing a sunset much later than when it happened
This would be a minor accident in any magazine other than the National Geographic. However, as that publication is presumed to be a factual reporting of what happens in the world exactly as it happens, one can only hope that their editorial processes will be improved to catch elementary mistakes like the one above
Climate change in the Solar System: Earth, Mars…and now Jupiter!
(first published on May 5, 2006)
After doomed Earth, populated by evil sinners driving devilish gas guzzlers, and Mars, where "deposits of frozen carbon dioxide near the south pole have shrunk for three summers in a row", here comes more evidence for Climate Change
Possible explanations:
1. Ghoulish oil companies have been making a larger mess of the Solar System then previously thought
2. There's lots of SUVs around, and I mean LOTS
3. Hot air from major scientific and political institutions talking about upcoming disasters, has been contaminating ever larger portions of the interplanetary space
4. There is a climate change clique with mental health problems, and they see evidence of global warming everywhere, including pictures of Jupiter and crop circles
5. All those NASA probes to the planets were launched mainly to carry millions of tons of CO2 and give Martians and Jupiters a good heath haze
or
6. Current warming trends on planet Earth are related not much if at all to human activity
Feel free to pick the one you find more likely
New Evidence about Climate Change
(first published on Sep 21, 2005)
scientist also say that deposits of frozen carbon dioxide near the […] south pole have shrunk for three summers in a row. They say this is evidence to suggest climate change is in progress
I say, let's reduce the amount of cheap flights now, before more gullies are formed!
London Metropolitan Police’s secret Gillette Squad
London, 14 Jun (MNN) – In an unexpected turn of the events, Sir Ian “Shoot-The-Innocent” Blair, London's Metropolitan Police Commissioner, has admitted today that a special, ultra-secret police squad codenamed “Gillette” has been behind the botched anti-terror 4am intervention of security forces in the house of honest, beard-sporting Londoners
During the course of the interview, Sir Ian repeated several times that, although weeks of controls had not revealed anything more suspicious in that house’s kitchen than pepper-enhanced Vindaloo sauce and broccoli, still the two men targeted by the operation were grooming the wrong kind of facial hair
They had to be stopped and shot^H^H^Hgently interviewed in nice secret service prisons^H^H^Hfirst-class hotels, if only to protect the purity of the English maxillar landscape, and the sale of razors..
In unrelated news: an unidentified Metropolitan Police Commissioner has defended the proposal to offer a Caribbean holiday to anybody remotely suspected of being a terrorist, because caught while either preparing a bomb, or threatening to sue the Police, or not shaving appropriately, especially from the lower lip downwards
W.W.W. MOON? The Why, What and When of a Permanent Manned Lunar Colony
Presented at the Human Future and Space Symposium – 28 Apr 2004 – The British Interplanetary Society
(an edited version has been published in the Journal of the British Interplanetary Society, Vol. 58, No. 3/4 March/April 2005, pp 131-137)
The aim of this presentation is to define the basic reasons, means and timescale for the establishment of a permanent, manned lunar settlement. Going beyond a review of the vast existing literature on the subject, the underlying goal is a call into action (=launches) to all people and organisations involved and interested in the exploration and use of the Moon:
· the BIS
· the Planetary Society
· all Moon-related Societies (such as the Artemis Society)
· every single Lunar and Planetary scientist and
· for reasons that frankly should be obvious to everyone, also the Mars Society
Introduction
Structure
This work is structured into three main sections, plus introduction and conclusions:
· Why go to the Moon? What are the reasons for sending humans?
· What are the technologies needed? Where will the settlements be located?
· When will the human race go back to the Moon? And when can we expect a permanent lunar settlement to be established by?
Background
A few points of note to explain the main assumptions: first of all by "human settlement" it is intended a self-sustaining permanently-manned colony, inhabited not only by scientists and astronauts. In the sense of being opposed to the idea of a "lunar outpost", the structure must be as far as possible from the old concept of "habitable tin cans" ('a la International Space Station).
Furthermore, there have been centuries of Moon-based dreams, for the past five decades or so with some technological flavour [1]. Practically, we do have the Apollo missions, with an equivalent extra-vehicular activity of around 7dd field work at most (more like 3 days, mostly by non-scientists) [2]. Apart from that, and some Soviet missions, it has all been a matter of dreams. The present work aims instead to be all about being pragmatic in the extreme, keeping also in mind that there IS an obvious conflict-of-interest: as one of the Author's goals is to be a member of the lunar settlement; thus helping oneself while helping humanity make use of the Moon.
Issues and Obstacles
Pragmatism means starting from the obstacles between us and the permanent lunar settlement. Very briefly, where is the interest in a new lunar adventure? [3]:
· There is no shortage of grand plans on paper (for example a Lunar Hilton Hotel) and of good ideas about living on the moon, left to collect dust whilst new projects are sketched (thus lowering ever more the likelihood that any of them is put in practice.
· Whatever plan is put forward, it will have to cope with the fact that space flight has always served a political mixture of civilian and military purposes [3]. And when the Apollo lost its political rationale, it was fully cancelled [4]
· A recent example is the amount of duplicated efforts in the R&D for the ISS, or the sorry story behind the stored "GoreSat" having had the wrong sponsor at the wrong time
· At this point in time, there is no political "lunar constituency" [5]. Some quote "Been there, Done that": since Apollo has shown that we can achieve the goal of reaching the Moon, there is little reason to do it again
· Despite earlier ideas there is no strategic military importance in a Moon base [1]. And the scientific environment has not been united (as reported for example by Spudis [6] about the Clementine Mission, and in the obnoxious, baffling "Mars vs. Moon" saga)
· Finally, the attributes usually associated the Lunar environment include hostile, harsh, extreme and dead. As a consequence it is generally believed that it is "very difficult to set up a base there" [7]. In other words, the Moon IS seen as a single patch of rather uninteresting desolated land. It can be explained with the dominating grey hues from the Apollo surface TV transmissions, but still as we will see it is based on a misunderstimation of all the Moon can provide.
Challenges
The establishment of a Lunar colony will include challenges beyond the resolution of the issues listed above:
· Permanence implies a sustainable Lunar economy. But without practical experience the field of lunar economics can only remain in the theoretical space
· There is a non-zero chance that simply the return will be indefinitely postponed. What will that mean [8], and how can we minimise that risk?
Pragmatism on the other hand cannot mean keeping a negative outlook. Let's remember that whatever task we want to achieve, it is by all means much simpler than what presented at the time when President Kennedy promised to land a man on the moon and return him safely within the decade [9].
WhyWhat makes the Moon unique? What are the reasons to go back to our natural satellite, and why with humans? For some reason, those reasons are not actually obvious, despite countless books, articles, conferences in the past.
One could argue that if the reasons were that clear, somebody would have done it already.
Astronomy
There is something that really makes the Moon a unique place in the whole Universe: the Far Side, permanently shielded from Earth by hundreds of kilometres of rock. There is no other place anywhere else that combines radio silence from the cacophony of terrestrial transmission and access to atmosphere- and ionosphere-free skies in the absence of a magnetic field.
The lunar Far Side is thus one of the best places to investigate what is invisible to terrestrial astronomy, that is most of the EM spectrum [10][11]. One example is in the very-low frequency bands [12], where we literally have never collected any data at all.
An advantage of using the lunar surface over orbit-based telescopes is also the possibility of setting up large interferometers without having to develop extremely precise formation-flying controls.
Another example that has been suggested is neutrino astronomy, especially with energies between 1GeV and 10TeV, where the background noise is reduced on the Moon compared to the Earth, Whole-sun neutrino observation would be possible [13], a rather important activity given the somewhat still quite open-to-debate theories about the amounts and types of solar neutrinos.
Lunar, Terrestrial and Solar studies
Obviously, a settlement on the Moon would also provide a great opportunity to understand more about the Moon itself. After all only a few acres have been explored in detail, so there is still plenty that needs to be studied. We miss information both about peculiarities (what is exactly the bright soil at "Reiner Gamma" made of?) and the overall conditions on the Moon (e.g., if the Moon's rocks have been formed in absence of water, what was/is the composition of volcanic gases [14]?). By having a lunar settlement, we can understand that and more, without having to bring rocks and samples back to Earth [15].
Those studies need not only have a local relevance. Apart from the Moon being as good a base as any for the discovery and tracking of Near-Earth Object, due to the amount of data collected during the 1960's the Moon is THE reference for planetary science [16] [17], a differentiated body with significant episodes of volcanism and plenty of crater types, where very little (if anything) is changing now.
There are even open Earth geology questions that can be better answered on our natural satellite. We do have a practical result in this field already. The post-Apollo mainstream lunar origin theory (an impact between proto-Earth and a Mars-sized body) does explain the excess iron in our own siderophile mantle [18].
One of the most interesting, relevant and important questions to ask on the Moon is, has Earth undergone recurring asteroidal/cometary "bombardments"? This has also biological consequences. Whilst traces are hard to find on our planet, the verdict should be well preserved in the lunar soil, starting with the impact crater frequency curve [19][20][21].
The same lunar soil's regolith contains also an at-least-billion-year-long record of the solar activity [22] [23] [24] that would help a lot in the understanding of the behaviour and evolution of our star. Just as well, buried regolith deposits are expected to preserve traces of the very young Sun [25]. Still, no need to stop there: the regolith of permanently shadowed craters at either Lunar pole may contain our best chance to read about the history of the Galaxy.
Exploration/exploitation of the Solar System
Thanks to its low surface gravity, the Moon can be considered a natural interplanetary spaceport. It is much less energy-consuming to go from there than from the Earth to any place in the Solar System (apart from terrestrial surface), including, paradoxically, to Low-Earth Orbit (LEO) [26] [27].
The Moon can then become a source of materials for the exploration and exploitation of the Solar System [28], including the classical example of asteroidal mining.
Given its proximity to our planet, launch opportunities occur quite often, a matter of weeks compared to years to reach even NEO's: it appears then logical to test stuff such as landing gear and autonomic robotic exploration on the Moon instead of waiting months and months to get the right alignment just to launch towards another planetary body [29].
Economical to reach, economical to land onto and depart from, and with frequent launch windows, the Moon's main strategic scientific and technological value may indeed lie in where it is [30]: "near but not here".
As an example, the Moon is a much better place than Earth to bring back Martian dust and rocks in a Sample Return mission, as chances of contamination of the specimen by Earth living organisms would be dramatically reduced (just as the risk of any Martian life to roam unchecked our planet) [31].
Geopolitics of the Moon
But even if the Moon is indeed unique for certain undertakings, our only effective example of its exploration is the 1960's Space Race between the USA and the USSR, when the "why" was purely a matter of political prestige to be gained by one superpower over the other.
We all know that race was won by the Americans. Little more than twenty years later there was no USSR left at all. From our 2004 point of view it can be argued that the USA effectively sealed their commanding status over the rest of the world by achieving the Apollo 11 landing.
If that is true, the first nation to return to the Moon will then either keep or destroy a huge chunk of American prestige.
If the next moonwalker will NOT be an American, commentators will have enough to seriously start talking about, and people to seriously start believing into witnessing the "End of the Empire". Just like in 1969, it is obvious that the entire geopolitical situation on Earth will appear wholly different if, for example, a local Chinese crew were to welcome in 2030 the first NASA manned mission to the Moon since December 1972.
Curiously enough, the present stalled situation, with the American Lunar capability dismantled and the potentially Moon-bound Saturn V machines gathering rust in open-air museums for political reasons, strongly resembles the 1400's Imperial Chinese Navy, destroyed by the Emperor after having explored (and effectively subjugated) much of the Indian Ocean decades before the Portuguese [32].
We all know that "race" was won by the Europeans. Little more than three hundred years later there was no Chinese imperial dominance left at all.
Social significance
Those apparently heartless political calculi of national prestige are (also) based on the very tangible social impact of "adventurous" manned space flight (i.e. the one where the astronauts effectively do go somewhere apart from orbiting Earth).
No better evidence about it could come than from Buzz Aldrin's own words when being shown a recording of the TV broadcast of the first lunar landing: "We [Aldrin, Armstrong and Collins] missed the whole thing". Grown-up commentators became so emotional to literally have to wipe off their tears in front of the first examples of planetary-wide audiences. The USSR's Pravda couldn't help printing the news in its front page, however small. Space exploration with humans is an endeavour that fascinates and enthuses all of us. It brings hope and shows that it is possible to "do the impossible". Generations have been born already for whom the proverbially impossible "flying to the Moon" is a reality.
Those generations are as sophisticated as any, though. As shown by the cool reception of President Bush's space initiatives, it will be much harder to convince them to go back to the Moon without a very healthy dose of pragmatism.
Humans or Robots
As quite often heard, humans ARE indeed costlier and riskier than robots. Environment control is easier in an automatic probe, there is no need to carry food not to recycle waste, etc. etc.
Still, in the history of Lunar exploration it would be hard to argue the unique advantages that humans bring to fieldwork [33] [34].
Take for a start Apollo 16: it was a mission conceived, designed and organised to collect volcanic rocks from an area consensually believed to be volcanic. It wasn't, but the astronauts were quickly able to focus themselves on collecting what was needed to understand the local soil [35]. Would it have been the same for a robot programmed specifically to investigate volcanic rocks?
Another example: the so-called KREEP rocks, unexpected, new and enigmatic collections of Rare-Earths [36]: would a rover (even as sophisticated as those in use in the XXI century) have been able to bring that back? Just as for Apollo 17's "orange soil", hardly a feature of any orbital mapping or automated lander's photograph.
Robots, of the kind feasible in the foreseeable future, can only do what they are programmed to do, so they will only examine and report according to their limited set of instructions…consider the Galileo space probe, designed to study Jupiter: as it passed by Earth in the early 1990's, it managed to get only hints of the existence of biological life (as gases in the atmosphere) and technological activity (as radiowave emissions).
Combine this with Mark Twain's musings: "there is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.". Years can be wasted (and important data remain uncollected) simply by building and sending robotic probes built around the wrong conjectures.
The only practical way to discover and understand something new (apart from chance) is by sending people [37].
We can generalise that people are needed where research would otherwise be prohibitively difficult [38]. And as the recent debate about repairing/upgrading the Hubble shows, humans are still too hard to substitute when there is the need for a complex upgrading or repair of instruments. From a Moon base, astronauts would be well placed to reach the new generation of telescopes built for one of the Sun-Earth Lagrange points [38]. Sure, their presence may degrade the natural lunar vacuum, but even with minimal precautions we have reasons to believe it will still be better than on Earth [39]. Finally, a Moon settlement is an alternative rest/rescue station from LEO operations [40].
Commercial Moon
Clearly the full-scale colonisation of the Moon may start and be much encouraged if feasible commercial reasons could be defined.
We have already mentioned the mining of materials for LEO and for solar system exploration: this could include the rather easy-to-extract lunar soil oxygen [41], ready to be sold to space transportation systems unwilling to carry it all from Earth surface. There has been much talk for years about extracting the exceedingly rare Helium-3 from the lunar soil as clean fuel for nuclear fusion reactors [42], but this may be classified as a non-reason as the first customers won't materialise for five or more decades.
Given the fascination astronautics has with the public, with the right kind of infrastructure in place there will undoubtedly be lunar movies, documentaries (e.g. IMAX's documentary about the ISS). And if costs for Earth launches and return trips will be lowered by a factor of 10 to a 100, tourists [43] will be able to start travelling to a Moon offering new kinds of sports, the chance of flying using one's own strength, and acrobatic shows featuring "impossible" feats. Furthermore, it will be in a low-g environment that would benefit all and especially those helped by hydrotherapy.
We do have an example of a one-g town built out of nowhere and quite good at self-sustainment at one-g, and it is called Las Vegas.
In the wake of plots of lunar land allegedly being sold on Earth, a market for memorabilia is expected, including moon dust, moon rocks, but also recovered items such as Apollo 16's forgotten film.
Legal environment
Short of transforming the Moon into some kind of frontier town, the settlement there by humans and the development of a lunar economy will need a legal framework agreed and understood by people and nations and companies alike. We will analyse this in next section. For the time being let's consider some legal reasons for going to the Moon.
In fact, many points about the legal conditions of all space activities need to be clarified, and historically those clarifications have come out from specific initiatives. For example the American effort at flying a satellite during the International Geophysical Year 1957 was sponsored by the government as a way of setting a precedent regarding over-flights [3] (and it worked). However trivial it may appear, there is an ongoing court case about the right by a certain company to claim ownership of the surface of asteroid Eros, and as such to be able to collect "parking fees" from NASA, that landed there one of its probes. Not to mention (at least for now) the Lunar Embassy, self-proclaimed owner of all planets and satellites apart from Earth, and the counterclaim by somebody asking for an "illumination fee" as sole owner of the Sun. Hardly stuff worth involving some Supreme Court somewhere, and yet the simple fact that all of this may even happen is the clearest sign that legal precedents and agreements need to be set.
And the longer they will not be, the less serious the whole idea of space travel will appear.
Issues
As yet nobody has been on the Moon for more than 30 years. All the reasons above have been somehow effectively nullified by counter-reasons. Among those, changing political climates especially in the United States (there is little if anything worth mentioning about other nations anyway). Bush Sr.'s space initiative was rapidly forgotten by the newly instated Clinton. And of course we are living in the shadow of Nixon's decision to concentrate on developing the Space Shuttle thereby making obsolete the successful Saturn V and shortening by several hundred thousand miles the range of manned space travel.
For years much has been done about humanity's fascination with (if not obsession about) finding life [44], thereby undermining all plans about returning to the Moon. Maybe it is only now that the idea that one needs not promote a single target for astronautics to expand: let's hope that NASA's exploration culture will not become a version of "All eggs in One Mars". On the side of lunar and planetary scientists there have been few examples of effective, politically aware and timely pressure on. At the time of the cancellation of Apollo 18 and 19, it can actually be argued that had the scientists lobbied Senators and Representatives early enough with the strength displayed when protesting against the decision, one or both those missions would have actually happened.
Or perhaps it was the Apollo era to be uniquely special. Within this interpretation, before and after Apollo the Moon [45] has simply been neglected because [46]:
– too close
– too easy
– too dead
– too "well-known"
WhatTechnical areas that will have to be dealt with to establish a permanent lunar settlement include travel and construction technologies, but also organisational, financial, legal and political aspects. Also, who do we expect will inhabit the Moon? And where will the settlement be built?
The following section analyses some of the issues involved: anyway, as the Apollo experience shows, what will actually happen will depend on circumstances simply unforeseeable (e.g. Saturn's S-1C's size being dictated by the make-up of the factory where it was going to be built [47]), including apparently insurmountable problems that will be solved when necessary.
As such, the minutiae of the technical details are not warranted the attention given instead to the overall outline of the what.
Technology
Given the accumulated experience it may appear more likely to be NASA leading the way towards a return to the Moon. President Bush's plan described in December 2003 does indeed call for a manned mission after a series of robotic rovers. It remains to be seen if this plan will go the way of so many others: clearly there is still a difference between recurring, partisan calls to space and a grand vision outlined as a fight for national survival by a young, prematurely killed President. With NASA following orders more than leading consensus on space exploration, it will be a hard call for presidential staff changing every 4 or 8 years to maintain the same policy about space flight for many years in a row.
How about forgetting the politicians then? Private space travel [48] is likely to be somewhere in the middle of its infancy, with the famous X-Prize perhaps going to be won by 2005 or 2006. Some companies are already planning cargo flights to the Moon and appears ready for the undertaking as soon as the right number of clients is achieved: Transorbital's Trailblazer and Orbital Development's MoonCrash. Definitely primitive stuff compared to a 1969 human landing, but no doubt progress will be made quickly were a viable entrepreneurial case be made (or found…), for example in providing services to the lunar settlement, starting with a detailed lunar map.
Space travel aside, a lunar settlement will have necessarily to be tested at first as a terrestrial mock-up [49]. For the beginning it may be appealing to simply re-use ISS technology, with slight changes to accommodate a non-zero gravity environment. But the endeavour will be viable only by development of ISRU (In-Situ Resource Utilisation): in other words, transport the building machines, not the goods [50]. Several studies indicate that lunar regolith can be used for construction, apart from extracting basic materials such as oxygen and iron. Water for making lunar cement and other manufacturing purposes may come from polar craters if confirmed (and if reachable): otherwise there may be a case for a thorough investigation of available small-size, water-rich NEO's.
Surface and local transportation of goods and people may involve ballistic trajectories on the airless Moon, and/or building of regolith-resistant railroads. It is also not difficult to imagine way-stations on Lagrange points acting as transmitters for some kind of lunar GPS (low-orbiting satellites not being viable due to uneven mass concentrations Mascons near the lunar crust)
Other important details include telecommunications (likely of the photonic variety wherever possible); power generation and distribution, with polar or orbital solar generators perhaps as first tests of microwave energy transmission across vast distances before implementing that technology on Earth.
Inhabitants
Much has been made of the fact that of 12 moonwalkers so far, 11 were not scientists (and the only one has been effectively sent at the last available opportunity). Apart from the very beginning, it will be difficult to maintain such a disparity in favour of professional astronauts. Next to the scientists there will likely be other service personnel (again, not only astronauts), all of them likely in monthly or quarterly shifts. With the settlement becoming more suitable to human habitation, visionaries/entrepreneurs will then lead the way to tourists, explorers, TV crews, etc….and to dubious characters, including bounty hunters (why expect men on the Moon behave much better than on Earth?)
Organisation & Financing
If the settlement will not be almost entirely devoted to political considerations, it will be run by an international public/private consortium [51] among all those entities aiming at benefiting from using the Moon. There are several possible examples on Earth, such as having a "Lunar Port Authority" or even a Lunar Economic Development Area [52]. It has been proposed to finance the enterprise by issuing bonds, however in general creative and effective ideas in this field (short of getting the taxpayer foot the vast majority of the bill) are still in short supply.
Legal and Political structure
It has been argued that if Intelsat is the appropriate precedent, there are no additional legal problems for lunar profiting [53]. However, as said above there are several possible legal hurdles to pass, including the "land ownership titles" sold by the "Lunar Embassy" to around 40,000 clients.
However idiotic the situation may appear, only a small percentage of the 40,000 would be enough to warrant some huge legal headache to any Lunar Port Authority, unless the related treaties are amended according to common sense.
Other legal bounds make much more sense. It should be clear to everybody working on the Moon that the unique local environment should be left as much untouched as possible [54], at least for scientific reasons [55].
This is a rather difficult endeavour. Apart from conservation of the historical sites, the extremely tenuous atmosphere is easy to be disturbed. It was for example doubled in mass by the exhausts and leaks of the Apollo missions.
It should also not be dismissed the call for the "conservation of the regolith": after all it has taken billions of years to "create the regolith"…as such it shouldn't be simply considered raw material or disturbing garbage. Again, it is all going to mean a revision of the international laws and politics about the Moon. At last, we may even get a new Lunar Treaty [56].
As for the local decisional structure, the best example appears the flexibility of the Antarctic base [57]. Hopefully certain ideas about social engineering, like attempts at founding the "perfect community" on the Moon, will simply remain on paper (or rather isolated)
Physiological considerations
It has been computed [58] that on average a maximum 20% of time should be spent by humans outside the protection of a minimum 4 meters of regolith. This should not be difficult to achieve, and there is anyway a good deal experience on the physiological needs of people, thanks to the work on the ISS.
Debates flare at times on the effects on muscles and bones of low-g compared to the known issues after long exposure to zero-g: a continuative presence on the 1/6g Moon would answer many questions, with implications including the planning of human activity in the 1/3g of Mars.
Some consideration (again not wholly unrelated to a Mars trip) should be also given towards making the atmosphere of the base as dust-free as possible [59]
Location of the settlement
Everything considered, the initial location is likely to be polar or equatorial, the only areas where orbit access is every 2 hours [60]. Traverses between pre-delivered rest-stations (like in Antarctica) could be organised to explore more [61].
And while it is true that in general an equatorial base would be easier and safer to reach from Earth, on the other hand a polar location is preferable, as it means smaller temperature variations, and probably water, with half of the sky (maybe even the Sun) continuously visible [62] [63]
Underground Habitable Structures
A particularly interesting area of study concerns the establishment of inhabited structures several meters below ground level.
Those are ipso facto shielded from both cosmic rays and UV radiation. There is little cross-contamination with the surface. They are protected from impacts, and harder to sabotage. The bedrock is easily accessible, for example to anchor equipment. More lightweight materials can be used and construction much simplified. Plastics need not be protected from UV degradation. Finally, such a structure is repeatable in the establishment of colonies and outposts anywhere in the Solar System.
On the Moon, underground structures could be housed, at least initially, in one of the "lava tubes" [64][65], of which there are many [66], some hundreds of meters long and with 10 meters or more of roofing material. Given the relative size with similar features on Earth, it may even be expected whole huge cave-like "tubes" to be available somewhere on the Moon. Alternatively, there have been already investigations on melting-while-drilling techniques [67], or even excavation through detonation (given the absence of water in the rocks, it is expected that the roofs of artificial caves will not collapse as it would happen on Earth) [68].
P.O.L.E. Peak Of Light Eternal
The P.O.L.E. concept (Peak Of Light Eternal, poetic licence taken) combines the advantaged above in the establishment of an underground polar settlement.
Possible locations depend on a detailed mapping of the polar regions: for the time being they may be the rim of the Peary Crater, or the flanks of the Shackleton Crater at the lunar South Pole. An earlier version was described as a 5-mile-long structure, 3200ft wide and 1600ft tall [69].
With plenty of space available, P.O.L.E. inhabitants would live in large Earth-like caves illuminated as if in the full glare of the Sun. They would not have to continuously look at the Earth outside their windows, and would not experience as much "longing back home" (as for example some Apollo astronauts). They would not be reminded of the Moon "desolation": still, the Earth, the lunar surface, the far-side would be available at short distance.
WhenThe science of astronautical forecasting is very imprecise, with grand targets being notable mostly for their continuously postponed delivery targets (again, the only exception is Apollo). Using past timescales as guidance, there is all the chance that we are in for a very long wait. How can we speed things up?
Current Initiatives
The latest "American President" Plan includes an Orbiter in 2008 and a Lander in 2009 [70]. It should be noted that at least 5 years are expected between the decision and the landing, despite several orbiters and several landers having been sent toward the Moon already (and despite several rovers having landed or getting readied for a Mars landing). General consensus is to send robots to explore the surface, without people at least for another decade [71]. On the private front, Transorbital appears ready to go as soon as the financial situation is right, and others are claiming to be more or less near a launch.
Lessons from past estimates
But it is hard to believe in any published timescale of space exploration as for decades almost every estimate has been proven very wrong, starting from several American President space initiatives (including the Space Shuttle), all the way down to grand promises by folded companies (e.g. Luna Corp, Applied Space Resources).
Truth is that without the USSR there is no race [72], so aims are achieved too late and over budget…if they are achieved.
Infrastructure development
All in all, we can only expect (very) long timescales.
Even if a minimal infrastructure has to be thought-through and readied, there is no sign as yet of an effective long-term exploration planning. For example the Martian satellite Deimos is a neglected body despite its extremely easy accessibility [73] and the fact that Mars exploration and a manned Mars mission are generally considered much more interesting [74] for the public than anything the Moon can offer.
If the politically baffling, even naïve Mars First vs. Moon First debate will be considered a zero-sum game both goals will suffer, with the Lunar projects being most neglected.
And yet, consider also that Mars Society's brilliant efforts and high visibility have brought lots of attention but little practical return on their ultimate goal: there is no plan for a manned Mars trip for a long time to come.
How much more difficult a Lunar equivalent, as evident in the sadly sterile campaigning by moonwalkers Aldrin and Schmitt?
The above can only suggest an even slower implementation of any return-to-the-moon plan. We can reasonably assume that, in the absence of another version of the Space Race, either between nations or between corporations, there will not be any attempt at human landing, let alone at starting the construction of a lunar base before the end of next decade.
Timescale shortening
With forecasting after 2020 as true as meaningless, and too many reasons to go to the Moon to simply consider the whole situation hopeless, let's give a target for the establishment of a permanent manned settlement by 2069 as a tribute to Apollo 11.
Still, there is the possibility of accelerating things by carefully using the acquired experience. A good example is the Clementine mission, designed and built by a small team in 20 months instead of several years.
Even if carrying "sub-optimal" experiments [75], Clementine has shown what can be done when delivery time is key. In general, the less the effort in developing new technologies for new missions, the shorter the time-to-launch (compare to Clementine the years wasted in developing the never-flown X-33).
One may even argue that nothing will really happen as long as Astronautics remains the realm of untamed R&D, with every new mission breaking new grounds: it would be interesting to see if research engineers will prevail over scientists and entrepreneurs [76]. In the meanwhile we can acknowledge that the only means to reach the ISS is the rather old technology of the Soyuz.
Side-effects of long timescales
With long timescales expected, we have to consider how the situation will look different several decades into the future.
Robots will of course get better. Advancement in robotics and telerobotics could effectively nullify some of the "why" points, decreasing the chances to develop the human colonisation of outer space by removing some weight from the whole concept of manned space exploration.
From this point of view a push for having humans explore the Solar System as soon as possible, starting with the Moon, is of the outmost importance.
In any case, it is difficult to imagine any robot becoming better than a human in field studies and the investigation of the unknown.
ConclusionsSome open issues still need to be solved. What will be the economy of permanent settlements? How often do we want to use the Moon? (This would have consequences on the choice of expendable vs. reusable vehicles). What will be the security needs of a Lunar base? (a whole new subject to investigate)
Negatives considerations remain aplenty. Sarcastically, some have said that we should go to the Moon by stacking up all the papers written about how to go to the Moon: or perhaps, all future attempts will be buried by their own bibliography.
In the meanwhile humans are developing astronautical experience by working in the wrong place, disturbing zero-g experiments in LEO instead of exploring beyond Earth orbit [77]. The Space station is replicating the Shuttle in over-promising, over-running and under- (or even un-) delivering.
All more the reason to consider the "why" the most fundamental point about establishing a permanent manned colony on the Moon.
The "what" is anyway heavily subordinate to the "reasons". The "when" depends on our capability at making an effort to achieve our goals instead of developing technologies for their own sake.
As such it is important to prioritise lunar action over plans and studies: enough with optimal missions, big probes, complex new, perhaps too advanced technologies…
Just do it!
As it is hopefully going to happen thanks to initiatives such as the Artemis Society and SpaceFuture's space tourism plans.
Is that going to herald a cultural change in the public space industry as well [78]? Will all the people, societies, companies involved in Space be able to build public interest into a long-term solar system exploration plan, postpone if not outright stop public squabbling and get into the business of actually going to the Moon?
With robots able to do and humans able to explore, and years needed simply to wait for a launch window outside the Earth-Moon system, lunar astronautics may as well be a way of keeping astronautics going instead of waiting for uncertain Mars missions while wasting away making LEO orbits.
Perhaps one day this will finally start to happen: maybe an innocent will rise and people will say, in the words of Bridget O'Donnell, "she didn't know it couldn't be done, so she went ahead and did it"
References[1] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p270
[2] M J Cintala et al, 'Advanced Geologic Exploration Supported by a Lunar Base: a Traverse across the Imbrium/Procellarum Region of the Moon', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p224
[3] A Roland, 'Twin Paradoxes of the Space Age', Nature 392, 143-145 (12 Mar 1998)
[4] W E Burrows, 'This New Ocean', Random House, 1998, p432
[5] W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, prologue 2
[6] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996
[7] B McNamara, 'Into the Final Frontier', Harcourt, 2000, p335
[8] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p247
[9] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p54
[10] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p295
[11] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p200
[12] J D Douglas et al, 'A Very Low Frequency Radio Astronomy Observatory on the Moon', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p301
[13] M M Shapiro et al, 'Celestial Sources of High-Energy Neutrinos as viewed from a Lunar Observatory', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p329
[14] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p113
[15] L A Haskin et al, 'Geochemical and Petrological Sampling and Studies at the First Moon Base', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p199
[16] G J Taylor, 'The Need for a Lunar Base: Answering Basic Questions about Planetary Science', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p190
[17] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p145
[18] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p166
[19] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p265
[20] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p106
[21] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p106
[22] H Y Mc Sween, Jr., 'Stardust to Planets', St. Martin's Press, 1993, p136
[23] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p196
[24] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p106
[25] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p115
[26] P W Keaton, 'A Moon Base/Mars Base Transportation Depot', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p144
[27] B M Cordell, 'The Moons of Mars: A Source of Water for Lunar Bases and LEO', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p814
[28] P W Keaton, 'A Moon Base/Mars Base Transportation Depot', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p141
[29] E A King, 'Mars: The Next Major Goal?', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p798
[30] W J Hickel, 'In Space: One World United', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p18
[31] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999
[32] A Krantowitz, 'An Opportunity for Openness', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p22
[33] G J Taylor, 'The Need for a Lunar Base: Answering Basic Questions about Planetary Science', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p189
[34] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p232
[35] A Chaikin, 'A Man on the Moon', Penguin Books, 1998, p492
[36] L A Haskin et al, 'Geochemical and Petrological Sampling and Studies at the First Moon Base', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p207
[37] A Chaikin, 'A Man on the Moon', Penguin Books, 1998, p494
[38] R Angel, 'Space: Telescopes Reveal the Way Forward', Nature, 2003, 373 (27 Mar 2003)
[39] G A Landis, 'Degradation of the Lunar Vacuum by a Moon Base', in Vol. 21, No. 3, 183-187 (1990), 'http://www.islandone.org/Settlements/DegradeLunarVacuum.html', Acta Astronautica, 1990, p
[40] B McNamara, 'Into the Final Frontier', G18Harcourt, 2000, p337
[41] M B Duke et al, 'Strategies for a Permanent Lunar Base', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p62
[42] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999, p302
[43] P Collins, 'The Future of Lunar Tourism', International Lunar Conference, Waikoloa, Hawaii Invited Speech, 21 November 2003
[44] W E Burrows, 'This New Ocean', Random House, 1998, p435
[45] D T Vaniman et al, 'Afterword', in G H Heiken et al, 'Lunar Sourcebook', Cambridge University Press, 1991, p634
[46] W E Burrows, 'This New Ocean', Random House, 1998, p434
[47] M Wade, 'Nova', Astronautix.com, 2003
[48] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p292
[49] B Finney, 'Lunar Base: Learning to Live in Space', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p754
[50] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999
[51] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999, p285
[52] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999, p112
[53] A L Moore, 'Legal Responses for Lunar Bases and Space Activities in the 21st Century', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p738
[54] R Briggs et al, 'Environmental Considerations and Waste Planning on the Lunar Surface', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p428
[55] D T Vaniman et al, 'Afterword', in G H Heiken et al, 'Lunar Sourcebook', Cambridge University Press, 1991, p635
[56] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p285
[57] A Lawler, 'Lessons from the Past: Toward a Long-Term Space Policy', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p762
[58] R Silberberg et al, 'Radiation Transport of Cosmic Ray Nuclei in Lunar Material and Radiation Doses', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p668
[59] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999, Appendix J
[60] J D Burke, 'Merits of a Lunar Polar Base Location', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p83
[61] M J Cintala et al, 'Advanced Geologic Exploration Supported by a Lunar Base: a Traverse across the Imbrium/Procellarum Region of the Moon', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p223
[62] J D Burke, 'Merits of a Lunar Polar Base Location', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p77
[63] D Whitehouse, 'The Moon – A Biography', Headline, 2001, p289
[64] F Hoerz, 'Lava Tubes: Potential Shelters for Habitats', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p405
[65] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', Wiley, 1999, p12
[66] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p106
[67] J C Rowley et al, 'In-situ Rock Melting applied to Lunar Base Construction and for Exploration Drilling and Coring on the Moon', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p465
[68] K A Ehricke, 'Lunar Industrialization and Settlement – Birth of Polyglobal Civilization', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p846
[69] K A Ehricke, 'Lunar Industrialization and Settlement – Birth of Polyglobal Civilization', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p840
[70] The Editors, 'Breaking Out of Orbit', Scientific American, April 2004
[71] D Schrunk et al, 'The Moon – Resources, Future Development and Colonization', in , '', Wiley, 1999, Appendix R
[72] H H Schmitt, 'A Millennium Project – Mars 2000', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p792
[73] B O'Leary, 'Rationales for Early Human Missions to Phobos and Deimos', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p804
[74] E A King, 'Mars: The Next Major Goal?', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p797
[75] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996
[76] A Chaikin, 'A Man on the Moon', Penguin Books, 1998, p638
[77] E Teller, 'Thoughts on a Lunar Base', in W W Mendell, ed, 'Lunar Bases and Space Activities of the 21st Century', Lunar and Planetary Institute, 1985, p25
[78] P D Spudis, 'The Once and Future Moon', Smithsonian, 1996, p245
Fools and Global Warming
Open Letter to Richard Littlemore of DeSmogBlog
Dear Richard
As much as I appreciate your blog for its reporting of the Environmental Wars conference, that I quite sadly was unable to attend, I find the "Jesters" entry more than a bit shameful, with all its unwarranted ad-hominems
If you really believe in an upcoming Climate Crisis, it makes no sense to cloud the debate with your unfunny attempts at humor.
They'll just elicit just as (un-)funny remarks on other blogs and website, about the "close-minded fools" of the "global warming lobby", and so on and so forth
iow, they won't take you or anybody or the planet's climate anywhere
They could actually be used by some to "demonstrate" that the "global warming lobby" has no arguments
Trusting you won't give up your day job for stand-up comedy, I'll keep looking in your site for more substantial opinions by you
Climate Change & The Skeptics Society – first impressions
The Skeptics Society has just held its Environmental Wars conference, to "debate about whether human activity is actually changing the climate of the planet"
Best links to get information about the conference appear so far to be:
Flipping Point, an article on Pasadena Weekly
The Skeptics Conference section of the DeSmogBlog
Jonathan H Adler's "The Environmental Wars" Conference on his The Commons blog
————–
As a long-time Climate Change skeptic, I can only be glad to see that no less a skeptic than Michael Shermer had been unwilling to jump on the CC bandwagon, until a few weeks ago. So there is no need to provide evidence that I am not paid by evil Oil companies to air my views: especially when I doubt the more catastrophical claims
In any case: having literally read it all, my impression is that the debate remains as polarized as ever, with each side seeing what they want.
At the end of the day, it may go down to a communications issue.
Some people simply refuse to be cajoled into intellectual submission by scare stories and depictions of upcoming disasters.
Some other people think those disasters are coming but are failing to identify how to communicate it without resorting to “the end of the world is nigh…repent!”.
And so, after realizing their message is not being heard as expected, the latter group try to coherce the former a little stronger, with several insults thrown in the process
So here's my plea to all Climate-Change-is-awful-let's-act-now People: Please change your ways at communicating. This is no way to conduct an intelligent debate. And it is no way to obtain results
If you guys and gals really believe to be right, find a way to get things done.
And stop asserting that "the debate is over". It doesn't work, either.
What’s wrong with David Irving
Writes Michael Shermer on the May 3rd, 2005 edition of the eSkeptic newsletter (titled “Enigma: The Faustian Bargain of David Irving”)
If you really want to silence David Irving, treat him with silence.
I agree with that, up to a point: because the matter with Irving could be interpreted as an issue of freedom of speech, and as such it deserves clarification.
Should people fighting for such a freedom organize what Christopher Hitchens called a Fair Play for Irving Committee?
Maybe not.
And I disagree with Mr Shermer, who in response to the Austrian authorities decision to imprison Irving, recommended to “let David Irving go” in the March 2nd, 2006 eSkeptic newsletter (“Giving the Devil His Due”)
Again to Shermer:
The enigma emerges from the fact that he is, at one and the same time, brilliant and bellicose, deviously clever and devilishly deceptive—a man who “coulda’ been a contenda” but instead morphed into a pretender…it is a great waste of a great talent. How and why did this happen?
In my opinion, Irving’s self-deception began when he entered the Magic Circle [i.e., the surviving former Hitler confidants]. […] Hitler, he explained, “had attracted a garniture of high-level educated people around him. The secretaries were top-flight secretaries. The adjutants were people who had gone through university or through staff college and had risen through their own abilities to the upper levels of the military service.” These Hitler confidants were well-educated and they spoke highly of their Führer. Who was Irving to argue?
As an example just look at the story Dr. Shermer himself reports at the bottom of that same newsletter “Post Script on Irving & the Eichmann Papers”: in which it is explained how Irving found a way to deny the existence of a direct order by Hitler for the Holocaust in face of a very clear phrase written by Adolf Eichmann in his memoirs: "The Führer has ordered the extermination of the Jews"
Freedom of speech does not mean freedom to deceive
A great chance to get out of Iraq
…or at least start packing?
Having achieved a major propaganda coup by eliminating fabled enemy Abu Musab al-Zarqawi, shouldn't the USA and Britain take advantage of the situation to get out of Iraq?
It is apparent that both Governments would rather do without troops in that country, and gain a lot electorally even just by announcing the start of their withdrawal
But it is also said that they need some face-saving situation, not wanting to appear weak in the eyes of their enemies (in Iraq, and elsewhere)
That situation is happening right now. There is an apparent result achieved, and for quite some time no insurgency attack will be able to counterbalance it
============
With the American elections looming against an extremely unpopular President, and Blair unable to prevail in the polls even against vacuous David Cameron, we can only hope they will realise what a great opportunity they have to stop making being part of the problem in Iraq, and to stop sending their soldiers to un-necessary deaths
Natural Sleep, anybody?
Some may already know that I hardly need more than 4 hours of sleep every night, apart from peculiar circumstances.
Sometimes I think with appropriate training I could be able to shorten that time to 2 hours: and if I could switch to power-napping (15 minutes every 3 hours or so), I’d do it without much of a thought (but sadly, without much of a family around me either…)
Having had to deal with countless criticism about this supposedly harmful behaviour, I can only be pleased in reading this comment on one Op-Ed’s by Alex Beam on the International Herald Tribune:
In his 2005 book "At Day's Close: Night in Times Past," historian A. Roger Ekirch […] argued that the transition from old-fashioned "segmented sleep" to today's continuous sleep pattern hasn't helped mankind. "There is every reason to believe that segmented sleep, such as many wild animals exhibit, had long been the natural pattern of our slumber before the modern age, with a provenance as old as humankind," Ekirch wrote. Up until the invention of artificial lighting, he noted, men and women went to bed earlier and woke up in the middle of the night to smoke a pipe, make love, or analyze their dreams.
Segmented sleep, that’s what’s healthy and “natural”: not 8 or 10 hours in a row
Petroski’s Cycle or Humanity’s Oblivion Spell
History will never teach us anything
This is a rather sad characteristic of Humanity, not just Engineering as identified by Henry Petroski in Success Through Failure (reviewed by Steven Cass in "Learning from Failure", IEEE's Spectrum, June 2006)
[…] a sequence of significant bridge failures […] have occurred at roughly 30-year intervals since 1847, when metal began replacing stone as the material of choice for crossing spans.
And it's not just bridges that exhibit cycles consisting of long periods of success punctuated by disaster: spacecraft, nuclear power plants, and other highly engineered artifacts have followed a similar pattern.
In his latest engaging and readable book, Success Through Failure, design guru Henry Petroski analyzes this cycle and other flaws in the things around us to show that the old truism "nothing succeeds like success" is in fact a recipe for doom.[…]
I do agree it’s a matter of memory. 30 years or so is less than a generation nowadays.
Look outside design and engineering, for example at the mostly manufactured Gulf of Tonkin Incident that escalated the Vietnam War in 1964 and the mostly manufactured evidence of WMDs in Iraq culminating in the invasion in 2003.
What's apparent is that despite the lengthening of the human life, nobody seems to recall the mistakes of the past
And so avoidable calamities, wars, genocides are bound to stay with us
Nothing new under the sun, until we will free ourselves from this evil spell
Pizza parlors vs. Child pornography
What is more important: investigating "terrorist" leads in pizza restaurants, something with only the tiniest of chances of being anywhere relevant, or fight child pornography?
Why, in an increasingly more distorted world, pizzas come first, of course! 8-(
Opinion: Why NSA spying puts the U.S. in danger
[…] FBI agents working real and pressing investigations such as organized crime, child pornography and missing persons are being pulled away from their normal law enforcement duties to follow up on NSA leads. Nobody wants another 9/11, of course, but we experience real crimes on a daily basis that, over the course of even one year, cause far greater loss of life and damage than the 9/11 attacks did.
There are children abused on a daily basis to facilitate online child pornography, yet I know of at least two agents who were pulled from their duties tracking down child abusers to investigate everyone who called the same pizza parlor as a person who received a call from a person who received an overseas call. There are plenty of similar examples.[…]